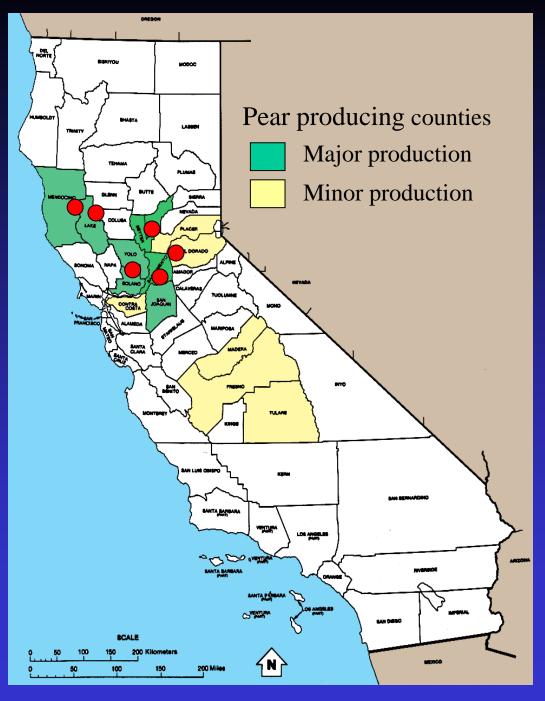
Evaluation of new bactericides for control of fire blight of pears caused by *Erwinia amylovora*

J.E. Adaskaveg Department of Plant Pathology UC Riverside


Assisting H. Forster, D. Thompson, D. Cary, UC Riverside

Cooperating: C. Ingels and R. Elkins, UCCE, Sacramento and Lake Co.

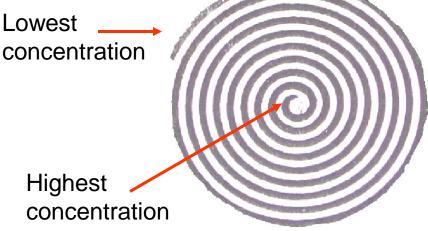
Fire blight - Chemical and biological control - Currently registered treatments -

Class	Compound	Products	Registration	Efficacy	Resistance	
Antibiotic	Streptomycin	Agric. Strep.	+	++++	+	
		Firewall	+	++++	+	
	Kasugamycin	Kasumin	CA Pending	++++		
	Oxytetracycline	Mycoshield	+	+++	+/-	
		Fireline	+	+++	+/-	
Biological	Aureobasidium sp.	Blossom Protect	+	++/+++	-	
	Pantoea sp.	Bloomtime Bio	+	+/+++		
	Pseudomonas sp.	Blightban	+	+/++		
	Actinomyces sp.	Actinovate	+	+/++		
Inorganic	Copper	Various	+	+/+++	-	
SAR	Acibenzolar S-methyl	Actigard	-	+/-	-	
	Citrus Extract	ProAlexin	+	+/-	- 1	
	PO ₃	K-Phite	+	+/++		
Sanitizer	Peroxyacetic acid	Oxidate/Perasan	+	-	-	
	Citrus Extract	Citrox	+	-	-	
* New and a set in the large V2 Kerida 2000, stalk and have been MCE						

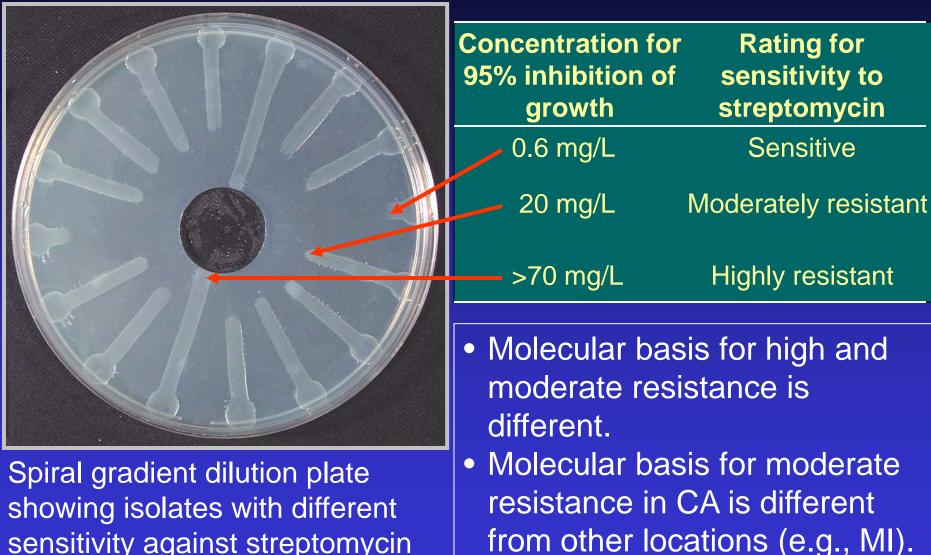
* - Newer copper products include Badge X2, Kocide 3000, etc. have lower MCE values compared to older products.

Surveys on antibiotic resistance in populations of *Erwinia amylovora*

 Collection of isolates from major pear growing regions in CA (2006 - 2014)


- Sacramento Co.
- Sutter/Yuba Co.
- Lake/Mendocino Co.
- El Dorado Co.
- Solano Co.
- Evaluate sensitivity
 - Streptomycin
 - Oxytetracycline
 - Kasugamycin

Determining inhibitory concentrations using the spiral gradient dilution method



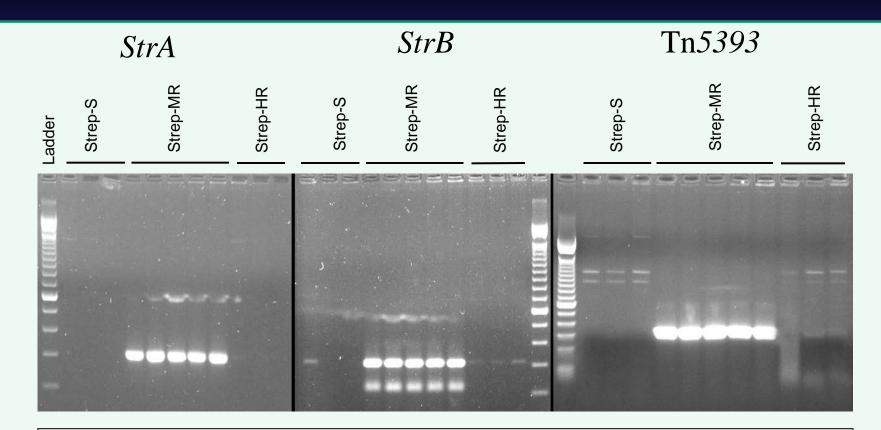
- A continuous 2.5-log antibiotic gradient is produced on an agar plate using a spiral plater.
- Bacteria are radially streaked over gradient, incubated, and evaluated.

In vitro sensitivity of E. amylovora isolates to antibiotics

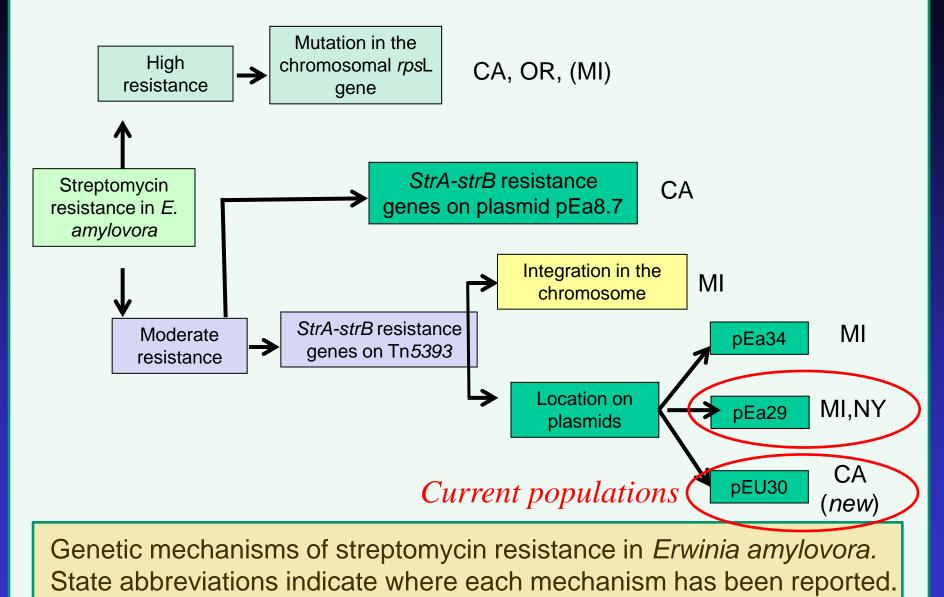
sensitivity against streptomycin

Table 1. Incidence of streptomycin resistance in isolates of Erwinia amylovora collected insurveys in 2014

County	Number of orchards	Number of isolates	Incidence of Streptomycin resistance (%)	Incidence of Oxytetracycline resistance (%)	Incidence of Kasugamycin resistance (%)
Sacramento	18	130	2.3 (1 location)	0	0
Lake	6	19	0	0	0
Mendocino	1	7	0	0	0
Total	35	152			

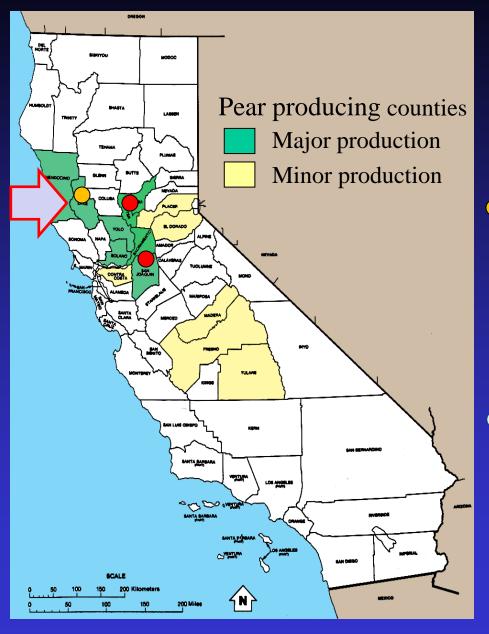

 * - Inhibitory concentrations were determined on nutrient agar using the SGD method. Minimum inhibitory concentrations (MIC, >95% inhibition) of isolates sensitive to streptomycin were
 0.14-2.5 ppm (>3-25 ppm resistant, >25 highly resistant).

** - MIC ranges for oxytetracycline and kasugamycin: 0.201 - 1.268 ppm and 3.54 - 25.59 ppm., respectively.


Streptomycin resistance in E. amylovora in California

- Isolates with high levels of resistance were common in the Western US in the 1990s.
- This type of resistance is now **rare** it was only found at a few locations in our surveys in CA from 2006 to 2013.
- These isolates have been displaced by **isolates with moderate levels of resistance**.
- Additionally, a **different genetic mechanism** of resistance among isolates and locations is found between years.

Streptomycin resistance genes in E. amylovora


PCR amplification of streptomycin resistance genes A) *StrA* and B) *StrB*, as well as C) transposon Tn*5393* in isolates of *Erwinia amylovora* sensitive (Strep-S), moderately resistant (Strep-MR), or highly resistant (Strep-HR) to streptomycin. Transposon 5393 has different versions based on geography of strains

Tn5393 is a transposon.

Annual fluctuations in streptomycin resistance in isolates of *Erwinia amylovora* 2006-2014

- Annual fluctuations in streptomycin resistance correlate with disease pressure and subsequent selection pressure from streptomycin applications.
- Isolates of *E. amylovora* with moderate levels of resistance (currently the common type in California) to streptomycin appear to be less fit but more fit than highly-resistant strains.
- This provides an opportunity: When rotated with new bactericides (removal of selection pressure) built-up of streptomycin resistance can be prevented and streptomycin can still be used effectively.

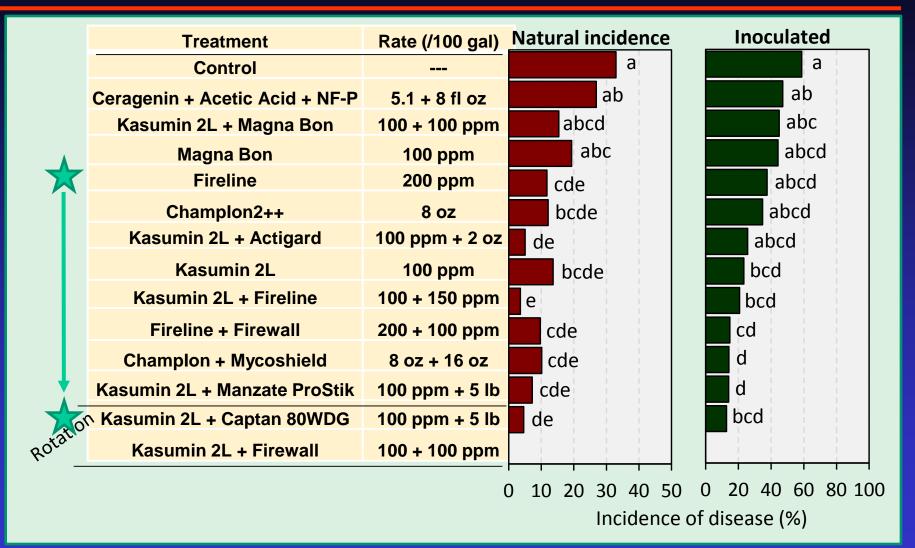
Streptomycin resistance in *E. amylovora* in California *Geographic distribution*

- Among the major production areas, the incidence of resistance is consistently zero in samplings from Lake Co.
- This has been attributed to

 a) the widespread use of
 mixture applications (strep
 + oxy) and b) cooler
 climate, less disease, and
 fewer applications of strep.

Summary: Sensitivity of Erwinia amylovora to antibiotics in surveys from California pear orchards

- Streptomycin resistance is widespread but not in Lake/ Mendocino Co. where strep is applied in mixtures with oxy.
- Isolates with moderate resistance to streptomycin have replaced isolates with high resistance.
- Moderately resistant isolates are less fit but more fit than highly resistant strains and are replaced by sensitive isolates in the absence of selection pressure.
- Populations adapt quickly to changing selection pressure: Resistance management strategies using rotations with new treatments will be very effective in managing the disease.
- Resistance to oxytet. has not be detected since 2009, with the exception of a few strains in 2012 but the potential exists.
- To date, no resistance to kasugamycin has been found in CA populations of *E. amylovora*.

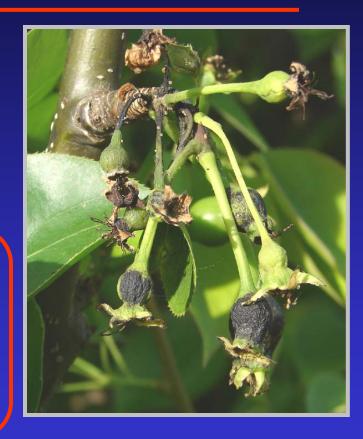

Evaluation of alternative treatments to streptomycin and oxytetracycline

Goals:

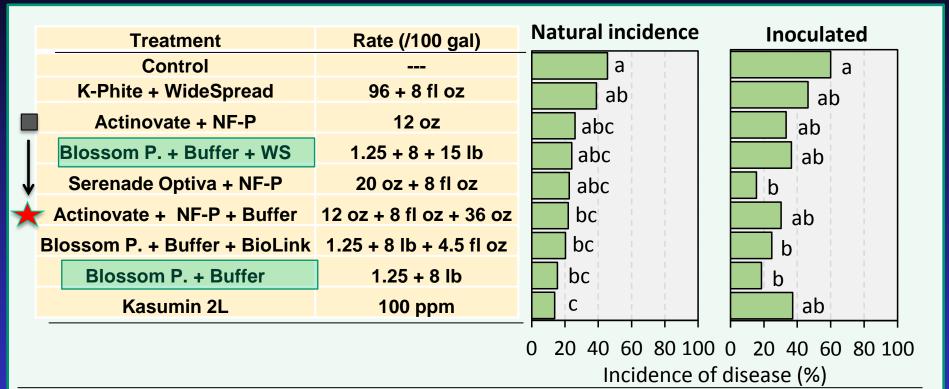
- Identify rotation/mixture materials for streptomycin and oxytetracycline
- Develop kasugamycin
- Identify new compounds that can be used for organic production: biocontrols, natural products

Evaluation of new bactericides for fire blight management of Bartlett pears in a field trial in Live Oak CA - 2014

4 applications between 3-12 (bloom) and 4-4-14 (rat tail). Inoculation on 3-27-14 after air-drying of treatments. Disease was evaluated on 4-10-14.


Summary: New bactericides for management of fire blight that can be used in programs with strep and oxy

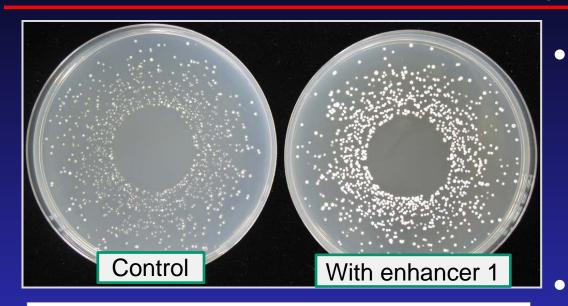
- Kasugamycin- Kasumin
 - Efficacy equivalent or better than terramycin or streptomycin.
 - Effective against strep/oxy-resistant isolates of *E. amylovora*.
 - Mixtures with strep, oxy, Dithane/Manzate, Quintec, Syllit and other compounds are effective and can be part of a resistance management program.
 - No phytotoxicity observed after 3 applications.
 - Federal Registration in Sept. 2014 (Jan. 2015, all states approved except CA)
- New copper materials with lower mce use
 - Kocide 3000, Badge X2, others
 - Effective
 - No phytotoxicity observed after 3 applications.
 - Can be part of a rotation program.


Evaluation of alternative treatments to streptomycin and oxytetracycline

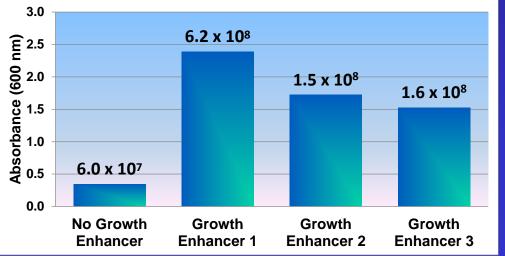
Goals:

- Identify rotation/mixture materials for streptomycin and oxytetracycline
- Identify new compounds that can be used for organic production: biocontrols, natural products

Evaluation of biological treatments for fire blight management of Bartlett pear – Live Oak 2014


4 applications between 3-12 (bloom) and 4-4-14 (rat tail). Inoculation on 3-27-14 after airdrying of treatments. Disease was evaluated on 4-10-14.

• Sulfur reduced activity of Blossom Protect.


 In vitro studies: complete inhibition of *A. pullulans* by 12,000 ppm sulfur (=10 lb/A field rate). Some inhibition at 4000 ppm, no inhibition at 3000 ppm.

• **Copper** (up to 400 ppm MCE tested) did not inhibit the biocontrol organism.

Improving growth of biocontrol agents with growth enhancers - Actinovate – *Streptomyces lydicus -*

Growth of *S. lydicus* (Actinovate) with Addition of Growth Enhancers

S. lydicus was grown on agar media without or with growth enhancers (selected nutrients).

Growth was evaluated after 5 days by enumerating spore production.

• More field studies are planned.

Evaluation of biological treatments for fire blight management of Bartlett pear – Live Oak 2014

Small-scale tests

Treatment	Rate (/100 gal)	
Control		а
Actinovate + Buffer	12 + 128 oz	b
Magna Bon	27 fl oz	C
Blossom Protect + Buffer + Wettable sulfur	20 + 128 + 225 oz	с
Blossom Protect + Buffer + Cuprofix	20 + 128 + 12 oz	d
	ſ	

0 20 40 60 80 100 Incidence of disease (%)

Applications done on 3-21-14 to flowers using a hand sprayer. After air-drying inoculation with *E. amylovora*. Disease was evaluated on 4-4-14.

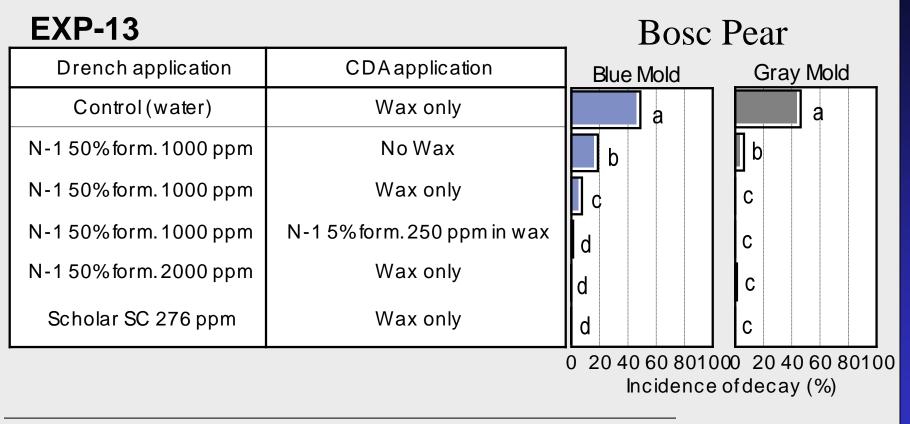
- High efficacy of Blossom Protect + copper.
- In vitro studies: Copper (up to 400 ppm MCE tested) did not inhibit A. pullulans. Sulfur is inhibitory.

Table 3. Activity of chemicals used for fire blight control against three biocontrol agents

Biocontrol product and agent	Streptomycin	Oxytetracycline	Kasugamycin	Captan	Mancozeb
Actinovate (Streptomyces lydicus)	+*	+	+	+	+
Blossom Protect (Aureobasidium pullulans)	-	-	-	+	+
Double Nickel 55 (Bacillus amyloliquifaciens)	+	+	+	+	+

 Activity was determined using the spiral gradient dilution assay. + = chemical is active against the biocontrol agent, - = chemical is not effective at maximum concentration of 40 ppm tested.

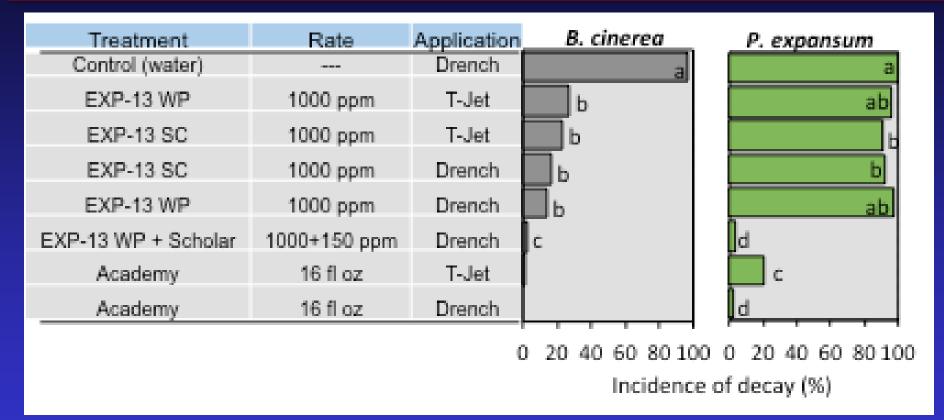
The antibiotics were ineffective against Blossom Protect because it is a fungal yeast; whereas the fungicides were inhibitory. The antibiotics were inhibitory to bacterial biologicals.


Summary: New natural products and biocontrols for management of fire blight

- Several new products are promising.
- Efficacy ranged from low to high and often was inconsistent between years, but Blossom Protect most consistent.
- Studies on optimizing efficacy of biocontrols are ongoing.
- Compatibility/Incompatibility:
 - Blossom Protect Incompatible with S and conventional fungicides; Compatible with label rates of Cu and antibiotics.
 - Actinovate Incompatible with antibiotics
- For best efficacy, natural products and biocontrols should be used with copper under low disease pressure.

Thank you

Questions?


New treatments for postharvest decay control

Experimental packingline study. Treatments 17-19 h by in-line drenches.

• EXP-13 was highly effective against blue mold and gray mold and other decays.

Evaluation of new postharvest treatments for management of gray mold and blue mold of Comice pear

Fruit were wound-inoculated with conidia of *B. cinerea* (5 x 10⁴ conidia/ml) or *P. expansum* (5 x 10⁵ conidia/ml) and were incubated for 16-18 h at 20C. Fruit were then incubated at 20C for 5 to 7 days. 16 fl oz Academy = 180 ppm fludioxonil + 300 ppm difenoconazole).

Summary: New Postharvest Strategies

- Several new products will becoming available in 2015.
 - Academy Difenoconazole + fludioxonil
 - Post-Doc Polyoxin-D (Exempt from tolerance)
- New Experimentals are being developed:
 - EXP-13 broad spectrum material with potentially exempt from tolerance status. Research ongoing to determine differential activity on pear varieties.
- Exempt from residue tolerance New standards of safety
 - Fermentation products of microbiological organisms
 - EPA classification under "Biological Pesticides"
 - Exempt in the US but may be fast-tracked in other countries.